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Abstract

Pre-neutron fragment-yield distributions are calculated for the 2**U(n, f)
and ?**Pu(n, f) reactions using a time-dependent fully microscopic ap-
proach. These yields are calculated as a function of incident neutron
energy from thermal to 5 MeV. We show that our calculations are in
good agreement with experimental results, and competitive in accuracy
with more phenomenological approaches. Further improvements to future
calculations of these yields are discussed.

1 Introduction

Microscopic methods, where the nucleus is described starting from protons, neu-
trons, and an effective interaction between them, have been used to calculate a
plethora of nuclear properties (see, e.g., [1, 2, 3] and references therein). Nuclear
fission in particular, has been studied using microscopic approaches since the
1980’s (e.g., [4, 6, 7, 5, 8]). For the present work, we have adopted the Bohr ap-
proximation to the Time-Dependent Generator Coordinate Method (TDGCM),
successfully used by Berger et al. [4] and Goutte et al. [6] to calculate fission as
the propagation of a collective wave packet built on microscopic nuclear states
and representing the fissioning nucleus as it moves toward scission. These ear-
lier calculations were used to examine properties such as the fission time scale,
and the mass distribution of fission fragments. Other, semi-classical, approaches
have been used to calculate fission-fragment properties. We note in particular
the full Langevin calculations of the Omsk group [9, 10, 11], and more recently
the Brownian-motion approach of Randrup et al. [12, 13]. We have preferred to
adopt the microscopic approach for the present work because, although it is far
more technically and conceptually challenging, this approach incorporates the
tenets of quantum mechanics from the start, such as the non-locality of the nu-
clear wave function and exchange terms in the Hamiltonian of the system. These
quantum-mechanical aspects of fission become particularly important near scis-
sion, as one parent nucleus divides into two fragments, each a nucleus in its own
right.



Using the TDGCM, we have calculated the fragment mass distributions, be-
fore prompt neutron emission, for the 235U(n, f) and 239Pu(n, f) reactions, and
for incident neutron energies E, ranging from thermal to 5 MeV. The same
D1S finite-range interaction [14, 15] has been used for both reactions and for
all incident neutron energies. Previous work [6] has shown the importance of
both the time-dependent and quantum-mechanical aspects of the theory to cor-
rectly reproduce the width of observed mass distributions through the spreading
of the collective wave packet. In more phenomenological approaches (e.g., [16])
the effect of this quantum spreading is sometimes mimicked by coupling a quan-
tum harmonic oscillator to a heat bath at finite temperature. In contrast, the
spreading in = microscopic calculations is caused by the coupling between the
collective degrees of freedom of the system. Thus, the choice of the collective
degrees of freedom of the fissioning nucleus plays a crucial role in the calcu-
lation of the mass distributions. Until now, microscopic calculations of fission
have systematically used the multipole moments of the nucleus as collective co-
ordinates (usually the quadrupole moment (2o to describe its elongation, and
the octupole moment Q3o to describe the mass asymmetry between heavy and
light fragments).

After an extensive analysis of TDGCM calculations of fragment distributions
using the Q29 and Q3¢ coordinates, we were led to the conclusion that these
coordinates, although very useful in describing the qualitative features of fission
observables (see, e.g., [6, 17]), are not ideal near, at, or beyond scission. We
discovered that, no matter what reasonable prescription we used to relate the
Q20 and Q3¢ coordinates to a fragment mass number, some fragment masses
were severely under-represented in the yield distribution. In particular, for
239Pu(n, f), fissions corresponding to a heavy fragment in the range A = 135 —
142 (near the peak of the yield distribution) were very difficult to populate. As
a result, the experimental mass distributions for thermal fission could only be
reproduced to within a factor of two, even near the peak of those yields. It
became clear that collective coordinates better suited to the description of the
nucleus near scission were needed in order to reproduce the experimental mass
distributions.

Instead of quadrupole and octupole moments of the nucleus, we have there-
fore adopted as collective coordinates the separation distance (d) between the
two fragments and the relative difference (§) between their mass numbers. We
have already alluded to the importance of collective coordinates describing the
fragments themselves when extracting their properties, such as their excitation
and kinetic energies [18], but to our knowledge this represents the first calcu-
lations of fission-fragment distributions in these new coordinates. In addition,
we account for the smearing effect of particle number fluctuations on the frag-
ment yields. In this report, we will show that these new improved calculations
produce fragment yields that are generally within ~ 30% of experimental mea-
surements, which is comparable to more phenomenological approaches. We will
also propose improvements that could further reduce the discrepancy between
theory and experiment.

After a brief presentation of the formalism in section 2, the fission fragment



distributions obtained for the 235U(n, f) and 23°Pu(n, f) reactions are presented
in section 3. We conclude with recommendations to improve these calculations
in the future. The main results of this report can be found in Figs. 3 and 4.
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2.1

Theory

Overview

The microscopic calculation can be broken down into several sequential steps.
We summarize these steps below before discussing them in more detail:

1.

2.2

Hartree-Fock-Bogoliubov (HFB) calculations, constrained by the new col-
lective coordinates d and &£, are performed to construct a potential energy
surface V' (d, &) as a function of those coordinates

The collective inertia tensor is calculated from the HFB solutions for each
(d,€) configuration

Another potential surface V; (d, €) is formed to represent the initial poten-
tial seen by the fissioning nucleus, by extrapolating V' (d, £) at the second
barrier with a quadratic function of d to form a potential well encompass-
ing the first two barriers.

A static collective Schrodinger equation is solved in the Vj (d, &) well to
produce a spectrum of quasi-stationary collective eigenstates.

For a given incident neutron energy F,, an appropriate initial wave packet
is constructed from the quasi stationary states.

A time-dependent collective Schrodinger equation, formed using the po-
tential surface and inertia tensor obtained in steps 1 and 2, is solved
numerically to evolve the initial wave packet to scission

The wave function flux is integrated over time along a line of (d, ) con-
figurations just before scission to produce the mass distribution of the
fragments.

Choice of collective coordinates

For a nuclear configuration described in cylindrical coordinates by the density
p (r, ¢, 2), and with the z axis taken along the symmetry axis of the nucleus, we
can define the number of particles to the left and right of a neck position zx by

Ar

27 [e%s) ZN
/ d(p/ rdr/ dz p(r,p,z)
0 0 —o0

2 0 oo
/ d(p/ rdr/ dz p(r, @, z)
0 0 ZN

Ar



with A + Ar = Ayot, the total number of nucleons in the fissioning nucleus.
We also define the number of particles in the neck by [5, 19]

/%dgp/ rdr/ dz p(r,p, z )exp[ (Z_ZN)Q]

with ay = 1fm. In practice the neck position zy is chosen at the point between
the fragments where QQ is a minimum. The collective coordinate £ is now
defined as the difference between the mass numbers of the fragments, normalized
by the total number of particles in the fissioning nucleus,

Ar — Ap
A

with this definition we always have —1 < £ < 1 with £ < 0 simply giving the
mirror image of the corresponding £ > 0 solution. The £ = 0 case describes
symmetric fission.

Next we calculate the center of mass of each fragment
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— dcp/ rdr/ dz p(r,p,z) z
27r

— dgp/ rdr/ dz p(r,p,z) z

and define the collective coordinate d as the distance between those centroids

& =

ZL

ZR

d = zr-—zL

Roughly speaking, the coordinate d replaces QQ2¢0 and £ replaces Q3¢ in fission
calculations, but these sets of coordinates are not equivalent. As we will see in
section 3, the potential surface V (d, ) has both similarities with and significant
differences from the more traditional V (Q20, Q30) surface.

2.3 The collective Hamiltonian

The collective Hamiltonian is discussed in [6]. For the (d, &) coordinates used in
the present work, the collective Hamiltonian takes the form®

Hcoll = -3 Z Z a:y df V(dag)

r=d,{ y= d€

where the By, (d,§) are elements of the 2 x 2 inertia tensor B (d,§). The cal-
culation of the By, (d,€) from the HFB solutions, is performed using the same
formalism as for the Bjj (Q20,@30) in [6]. In short, the inertia tensor B is the
inverse of the mass tensor M,

B(d¢§) = M7 (d9)

IThe TDGCM calculations in the present work do not include zero-point energy corrections.




k
whose elements are expressed in terms of moments ./\/l( ),

Moy = 3 (MO0) (M00) (M)

Y Y

1

The moments themselves are calculated from the HFB solutions |® (d,£)) and
the two quasiparticle states |uv) built on those HFB states,

MER = Z<‘I’(d75)|ﬁ|W><MV|@|‘I>(d7£)>

x k
Y g (E/l +EV)

with E,, + F, the energy of the two-quasiparticle state. The operators & and g
stand in for the operators corresponding to the d and & coordinates.

As a cross-check of the inertia tensor calculations, we note that for very large
separation distance between the fragments, the kinetic energy of the system is
governed by the constant reduced mass p of the system

1 02 h?
—Edew — 2Nmp3

with m the nucleon mass and where the momentum in the d coordinate is given
by

_h 0
bd = 3 ad
From this we deduce the simple asymptotic formula
hc)?
. (e
©wme

For example, in the case of 24°Pu fission, typical mass divisions give p = 60 and
therefore Bgg — 0.7 MeV fm?. Our microscopic calculations for the symmetric
and 107/133 (i.e., most likely) mass divisions at d = 20 fm also give Byq =
0.7 MeV fm”.

2.4 The initial state

In order to calculate the quasi-stationary states used to construct the initial
wave packet, the potential energy surface V (d,£) was modified at the second
saddle to create a potential well Vj (d,§) with high walls. Fig. 1 shows a cut
of the modified potential surface for symmetric fission. The same inertia tensor
described in section 2.3 is used to calculate the quasi-stationary states by solving
the time-independent collective Schrodinger equation

H)g0(d,6) = Ego(d.€) (1)
with

Y, = ——Z Z ~Buy (4.6) 5 +vo<d5>

z=d,{ y= dE
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Figure 1: Extended potential (red dashed line) for symmetric fission, used to
calculated the quasi-stationary states for 24°Pu. The black solid line shows the
unmodified potential for reference.

the eigenstates gg (d, £) and corresponding eigenvalues E are obtained by solving
the Schrédinger equation numerically.

For a given incident neutron energy FE, we first need to calculate the ex-
citation energy FE, of the fissioning system. This excitation energy is given
by

E, = E,+FE4—5,+AZPE

where E,4 is the height of the first saddle, .S,, is the separation energy of the
neutron in the compound nucleus, and AZPE is the difference in zero-point
energy (ZPE) between the first well and the first saddle. In practice, we find
that the ZPE is essentially the same in the first well and at the first saddle,
and therefore AZPE ~ 0. The barrier heights E4 can be found in [20], thus we



obtain

0.80 MeV  for 236U
Es—S, =
0.53 MeV for 240Pu

For each E,, a collective wave packet was constructed as the superposition of
quasi-stationary states within 500 keV of the corresponding E,. Thus, between
8 and 15 equally-weighted states were used for the different energies and the
two (n, f) reactions considered here.

2.5 Calculation of the pre-neutron fragment distributions

The time dependent collective Schrédinger equation

Hcollg (dyfat) = Eg (dagvt)

is solved numerically with the initial condition given by the quasi-stationary
states (Eq. (1)),

g (d7§at = 0) = 9o (d7 g)

The corresponding probability current J is defined at every point (d, &) by the
continuity equation

d -
7 9@EOP+V - J@gt) = 0

For each value of &, we can identify a distance ds; such that the nucleus is
scissioned for d > ds but not for d < ds. The resulting “fission line” defined by

separates the (d,€) into inner and outer regions for the time-dependent calcu-
lation. The fragment mass distribution before neutron emission is obtained by
integrating the flux over time along the fission line

Y (A) = /Ooodtf(d,g,t)-ﬁds

where 71 is a unit normal vector and ds is the length of the infinitesimal segment
through which the flux is calculated. In the present work, n was taken in the
direction of the current j, which maximizes the flux, and ds was assumed to
have the same value for each fragment mass A. The yield Y (A) was normalized
according to standard convention so that

Atnt
Y (4) = 200
A=0

Finally, we must account for fluctuations in particle number of the fragments
due to both pairing effects, and the finite number of particles QQ in the neck



region for points along the fission line. We find typically 2 < Qn < 5 along
the fission line, and have therefore adopted an average value of 3.5 for the
fluctuation in the number of particles A in each fragment. This fluctuation
leads to a smoothing of the yield which we calculate as

- o0 1 (A _ A')2
V(4) = A'Y (A _A-4)
w = [ R
with o = 3.5.

3 Discussion

The potential energy surface for 24°Pu obtained by HFB calculations is plotted
as a function of both (Q20, Q30) and (d, £) collective coordinates in Fig. 2. The
energy surfaces in both coordinate systems display common features, such as
two saddles and two minima in the low Q29 or d region, as expected. However,
the potential V' (d, £) is much flatter as a function of £ starting at the second well
and for higher d compared to V (Q20, Q30) as a function of Q39. This “flatness”
of the potential is in part responsible for a more slowly falling yield in the wings
of the distribution compared to the earlier calculations in [6].

In Figs. 3 and 4 we show the calculated pre-neutron fragment distributions as
a function of fragment mass and for different incident neutron energies, obtained
for the reactions 23°U (n, f) and 239Pu (n, f) respectively. For the 23°U (n, f)
reaction, pre-neutron yields have been extracted from experimental data by
Straede et al. [21], and we compare our calculations directly to those values
in Fig. 3. About 2/3 of the calculated fragment yields lie within 30% of the
experimental values, with the most significant discrepancies occurring near peak
for thermal fission (F,, = 0.0 MeV) and near symmetric fission (A = 118) for
E, > 2MeV.

The results in Fig. 4 for the 239Pu(n, f) reaction can only be compared
to pre-neutron yields extracted from measurements at thermal neutron ener-
gies [22]. In that case, the agreement with experiment is better than for the
25U (n, f) results. About 3/4 of the calculated thermal yields agree with the
experimental values to within 30%. There are no experimental data sets avail-
able at higher incident neutron energies, and we compare our calculations in-
stead to the phenomenological general fission model (GEF) of Schmidt et al.
[16]. As in the 235U (n, f) case, our 2*°Pu(n, f) yield calculations underesti-
mate the symmetric channel production with increasing F,. In addition, the
microscopic predictions and GEF results differ in the wings of the distributions
for E,, > 1 MeV.

The results shown in Figs. 3 and 4 represent the best predictions of pre-
neutron mass yields that can be achieved with microscopic theories today. Fur-
thermore, they are comparable (if not better) than some of the phenomenological
models that have been fitted to the available data: for example, the GEF model
reproduces the experimental Straede et al. data for 235U (n, f) to within 30%



Figure 2: Comparison of 24°Pu potential energy surfaces (in MeV) calculated
as a function of the (Q20,Q30) coordinates (top plot) and (d,¢) coordinates
(bottom plot).
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Figure 3: Theoretical calculations of mass yields, before neutron emission, for
the 235U (n, f) reaction. Microscopic-theory values (dashed red lines) are com-
pared to the experimental systematics of Straede et al. (solid black curves) at
incident neutron energies ranging from E,, = 0.0 MeV (thermal), to E,, = 5.0
MeV.
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Figure 4: Theoretical calculations of mass yields, before neutron emission, for
the 239Pu (n, f) reaction. For thermal neutrons (E, = 0.0 MeV), microscopic-
theory values (dashed red lines) are compared to the experimental results of
Schillebeeckx et al. (solid black curves) and to calculations using the phe-
nomenological model GEF of Schmidt et al. (dotted green line). For E, = 1.0
to 5.0 MeV, the microscopic-theory calculations are compared to the GEF model
results only, since no experimental datiilare available.



in about 45% of the cases shown in Fig. 3, and in about 57% of the thermal-
fission yields for 2*Pu(n, f). It is worth mentioning that phenomenological
approaches in general, because they contain parameters adjusted to the very
types of data they are trying to reproduce, should be inherently more flexible
than microscopic theories. Nevertheless, the microscopic calculations presented
here could be improved to reduce the 30% agreement with data we are currently
able to achieve.

The most important improvement to the calculation concerns the finite-range
effective interaction that is the only phenomenological input to the theory. It is
well-known [4] that the height of the second saddle depends sensitively on the
surface coefficient of the interaction. This parameter is not well-constrained ex-
perimentally, and it should be possible to lower the barrier for symmetric fission
sufficiently to significantly improve the predicted yields near symmetric fission
in Figs. 3 and 4. Furthermore, the asymmetry coefficient of the interaction can
also be legitimately adjusted, and could improve the yields for those fragments
far from stability. Since the fragments furthest from stability tend to be those
near symmetric and very asymmetric fission, this could improve the calculated
yield curves near the center and in the wings.

Finally, the TDGCM calculations performed in the present work assume
that the potential surface and inertia tensor do not vary with increasing incident
neutron energy. The extent to which this assumption is valid is currently being
studied at LLNL and elsewhere using collective-intrinsic coupling formalisms
[23] and temperature-dependent HFB calculations. These energy-dependent
calculations are not expected to drastically alter the results given the relatively
low neutron energies considered here (E,, < 5MeV), but the effects on the yields
as a function of F,, should nevertheless be explored.

4 Conclusion

We have presented microscopic time-dependent calculations of the pre-neutron
fragment yields for the 235U (n, f) and 23°Pu(n, f) reactions, as a function of
incident neutron energies up to E, = 5 MeV. Wherever experimental data are
available, we find a ~ 30% agreement between theory and data for most of the
yields we calculate. The present results represent a significant improvement
over earlier microscopic calculations which typically differed from experimental
values by a factor of two or more. The improvement over those earlier results was
achieved primarily by using collective coordinates and corresponding operators
more appropriate to the description of the nucleus near scission, than what
is commonly used in the literature. Instead of the standard quadrupole and
octupole moments of the nucleus, we used the mass difference between fragments
and the separation between their centers of mass as collective coordinates.

In the future, the current 30% discrepancy between theory and data could
be further reduced by adjusting the surface and asymmetry coefficients of the
effective interaction used in the microscopic calculation. These adjustments
could probably increase the calculated yields for symmetric and very asymmetric
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fission and therefore, by normalization of the overall yield distribution, reduce
the yields near peak as well thereby bringing the yield curves in better agreement
with experiment.
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